Meeseeks.pre-alpha.demo.v2.mp4
Meeseeks runs right in your terminal, browser, or hosted as an API.
Meeseeks is an AI task agent assistant built on a plan → tool selection → step execution loop. It breaks a request into steps, chooses tools per step, runs them, and synthesizes a final reply. It keeps a session transcript, compacts long histories, and stores summaries for continuity across longer conversations.
Legends (Expand to View)
| Completed | In-Progress | Planned | Scoping |
|---|---|---|---|
| ✅ | 🚧 | 📅 | 🧐 |
| Answer questions and interpret sensor information | Control devices and entities | Web chat interface |
|---|---|---|
![]() |
![]() |
![]() |
We are upgrading the API backend to better support a task-orchestration frontend. Next up: finalize the API shape, then polish the frontend and ship the full console experience.
| Task detail page (coming soon) | Landing console (coming soon) |
|---|---|
![]() |
![]() |
- (✅) Plan → select tools → execute: Builds a short plan, chooses the right tools per step, and executes them.
- (✅) Step-level reflection: Validates tool outcomes and adjusts tool inputs when required.
- (✅) Plan updates: Emits updated action plans after each step so UIs can refresh the to‑do list.
- (✅) Synthesized replies: Produces a final answer after tool results are collected and summarized.
- (✅) Session transcripts: Writes tool activity and responses to disk for continuity.
- (✅) Context compaction: Summarizes long sessions and auto-compacts near the context budget.
- (✅) Token awareness: Tracks context window usage and exposes budgets in the CLI.
- (✅) Selective recall: Builds context from recent turns plus a summary of prior events.
- (✅) Session listing hygiene: Filters empty sessions and supports archiving via the API.
- (✅) Model gateway: Uses LiteLLM for OpenAI-compatible access across multiple providers.
- (✅) Model routing: Supports provider-qualified model names and a configurable API base URL.
- (✅) Reasoning compatibility: Applies reasoning-effort controls where supported by the model.
- (✅) Tool registry: Discovers local tools and optional MCP tools with manual manifest overrides.
- (✅) Local file + shell tools: Built-in Aider adapters for edit blocks, read files, list dirs, and shell commands (approval-gated). Edit blocks require strict SEARCH/REPLACE format; the tool returns format guidance on mismatches.
- (✅) Home Assistant: Ships a Conversation integration for voice control and entity actions.
- (✅) REST API: Exposes the assistant over HTTP for third-party integration.
- (✅) Web chat UI: Streamlit interface with plans, tool input types, and responses.
- (✅) Terminal CLI: Fast interactive shell with plan visibility and tool result cards.
- (✅) Permission gate: Uses approval callbacks and hooks to control tool execution.
- (✅) Operational visibility: Optional Langfuse tracing (session-scoped traces) stays off if unconfigured.
Optional features that can be installed when needed.
- (📅)
QualityUse CRITIC reflection framework to reflect on a response to a task/query using external tools via[^]. - (🚧)
PrivacyIntegrate with microsoft/presidio for customizable PII de-identification.
- CLI layout adapts to terminal width. Headers and tool result cards adjust to small and wide shells.
- Interactive CLI controls. Use a model picker, MCP browser, session summary, and token budget commands.
- Inline approvals. Rich-based approval prompts render with padded, dotted borders and clear after input.
- Unified experience. Web, API, Home Assistant, and CLI interfaces share the same core engine to reduce duplicated maintenance.
- Shared session runtime. The API exposes polling endpoints; the CLI runs the same runtime in-process for sync execution, cancellation, and summaries.
- Event payloads.
action_plansteps are{title, description};tool_result/permissionusetool_id,operation, andtool_input.
packages/meeseeks_core/: orchestration loop, schemas, session storage, compaction, tool registry.packages/meeseeks_tools/: tool implementations and integrations (including Home Assistant and MCP).apps/meeseeks_api/: Flask REST API for programmatic access.apps/meeseeks_chat/: Streamlit UI for interactive chat.apps/meeseeks_cli/: Terminal CLI frontend for interactive sessions.meeseeks_ha_conversation/: Home Assistant integration that routes voice to the API.packages/meeseeks_core/src/meeseeks_core/prompts/: planner prompts and tool instructions.
Requests flow through a single core engine used by every interface, so behavior stays consistent across UI, API, and voice.
flowchart LR
subgraph Clients["Clients / Interfaces"]
User[User]
CLI["CLI\n(apps/meeseeks_cli)"]
Chat["Chat UI\n(apps/meeseeks_chat)"]
API["REST API\n(apps/meeseeks_api)"]
HA["Home Assistant\n(meeseeks_ha_conversation)"]
end
subgraph Runtime["Shared Runtime\n(packages/meeseeks_core/session_runtime.py)"]
SessionRuntime["SessionRuntime"]
RunRegistry["RunRegistry"]
end
subgraph Core["Core Orchestration\n(packages/meeseeks_core)"]
TaskMaster["orchestrate_session\n(task_master.py)"]
Orchestrator["Orchestrator\n(orchestrator.py)"]
Planner["Planner\n(planning.py)"]
ToolSelector["ToolSelector\n(planning.py)"]
StepExecutor["StepExecutor\n(planning.py)"]
PlanUpdater["PlanUpdater\n(planning.py)"]
ActionPlanRunner["ActionPlanRunner\n(action_runner.py)"]
ContextBuilder["ContextBuilder\n(context.py)"]
ActionStep["ActionStep\n(classes.py)"]
TaskQueue["TaskQueue\n(classes.py)"]
end
subgraph LLM["LLM Abstraction\n(packages/meeseeks_core/llm.py)"]
ChatModel["ChatModel (Protocol)"]
BuildChatModel["build_chat_model()"]
end
subgraph Tools["Tool Abstractions + Implementations"]
ToolRegistry["ToolRegistry\n(tool_registry.py)"]
AbstractTool["AbstractTool\n(classes.py)"]
LocalTools["Local tools\n(Aider adapters)"]
MCPTools["MCP tools"]
HATools["Home Assistant tools"]
end
subgraph Store["Session Storage\n(packages/meeseeks_core/session_store.py)"]
SessionStore["SessionStore"]
end
subgraph Events["Session events"]
EventLog["JSONL event log"]
Polling["API polling\n(/events?after=...)"]
end
User --> CLI
User --> Chat
User --> API
HA --> API
CLI --> SessionRuntime
Chat --> SessionRuntime
API --> SessionRuntime
SessionRuntime --> TaskMaster
SessionRuntime --> SessionStore
SessionRuntime --> RunRegistry
TaskMaster --> Orchestrator
Orchestrator --> Planner
Orchestrator --> ToolSelector
Orchestrator --> StepExecutor
Orchestrator --> PlanUpdater
Orchestrator --> ActionPlanRunner
Orchestrator --> ContextBuilder
Orchestrator --> ToolRegistry
Orchestrator --> SessionStore
ActionPlanRunner --> TaskQueue
ActionPlanRunner --> ActionStep
ToolRegistry --> AbstractTool
AbstractTool --> LocalTools
AbstractTool --> MCPTools
AbstractTool --> HATools
Orchestrator --> BuildChatModel
BuildChatModel --> ChatModel
SessionStore --> EventLog
EventLog --> Polling
API --> Polling
Orchestrator --> Langfuse
The docs landing page mirrors the feature highlights in this README. Keep both updated together for consistent messaging.
Overview
- docs/index.md - product overview and architecture
Setup and configuration
- docs/getting-started.md - setup guide (env, MCP, configs, run paths)
Repository map
- docs/components.md - monorepo map
Reference
- docs/reference.md - API reference (mkdocstrings)
- docs/session-runtime.md - shared session runtime used by CLI + API
User install (core only):
uv syncOptional components:
uv sync --extra cli # CLI
uv sync --extra api # REST API
uv sync --extra chat # Streamlit UI
uv sync --extra ha # Home Assistant integrationDeveloper install (all components + dev/test/docs):
uv sync --all-extras --all-groups- Keep the core engine centralized. Interfaces should remain thin to avoid duplicated maintenance.
- Organize logic into clear modules, classes, and functions. Favor readable, well-scoped blocks.
- Prefer small, composable changes that keep behavior consistent across interfaces.
We welcome contributions from the community to improve Meeseeks. Use the steps below.
- Fork the repository and clone it to your local machine.
- Create a new branch for your contribution.
- Make your changes, commit them, and push to your fork.
- Open a pull request describing the change and the problem it solves.
If you encounter bugs or have ideas for features, open an issue on the issue tracker. Include reproduction steps and error messages when possible.
Thank you for contributing.




